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Abstract—Several synthetic strategies to diamines 1–3 are described. The optimum approach via opening of aziridine afforded 1–3 in
29–60% yield over 3–5 steps. A study on formation of the benzylic stereocenter using Toste’s rhenium-catalyzed asymmetric reduc-
tion of phosphinyl ketimines was also evaluated and afforded 15 in 92% de.
� 2007 Elsevier Ltd. All rights reserved.
Inhibition of the MAP kinase p38 has been implicated in
the treatment of arthritis and other inflammatory dis-
eases.1 Our medicinal chemistry team identified the
homobenzylic–benzylic diamine motifs 1–3 (Fig. 1) as
a key structural feature of several potent p38 inhibitors.2

While benzylic and homobenzylic amines are common
pharmacophores found among active pharmaceutical
ingredients,3 their syntheses remain a challenge. Herein
we disclose our investigations toward an optimal synthe-
sis of chiral diamines 1–3 containing two spatially sepa-
rated nitrogen stereocenters.4
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Figure 1. Different approaches to setting the homobenzylic and the
benzylic stereochemistry.
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The common feature of diamines 1–3 is the (S)-config-
ured homobenzylic stereogenic center, which we initially
envisaged to arise via diastereoselective alkylation of an
appropriate propionate followed by a Curtius rear-
rangement. We proposed that the secondary benzylic
center would be introduced by enantioselective reduc-
tion of the corresponding ketone or imine. In the case
of 3, a benzylic Ritter-type reaction would afford the
corresponding gem-dimethyl product.

Our original route to diamines 1–3 took advantage of
the readily available amine 4 (Scheme 1) that was
suitable for SAR studies. The chiral N-protected
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Scheme 1. Diastereoselective alkylation approach to setting the
homobenzylic stereocenter. Reagents and conditions: (a) PhNCS,
THF, rt; (b) TsCl, aq NaOH, THF, rt, 91% (2-step yield); (c) KOtBu,
EtCOCl, THF, rt, 75%; (d) LiHMDS, m-bromobenzyl bromide (7),
THF, �78 �C, >99% de, 99%; (e) NaOH, dioxane, 100 �C, 93%; (f)
EtOCOCl, TEA, THF, 0 �C to rt; (g) aq NaN3, 0 �C to rt; (h) BnOH,
dioxane, toluene, 110 �C, 96.7% ee, 67% (3-step yield).
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Scheme 3. Telescoped sequence from 9 to (S,R)-12 and (S,S)-12.
Reagents and conditions: (a) 5 mol % (S)-CBS, THF, �14 �C, 95% de;
(b) 5 mol % (R)-CBS, THF, �14 �C, 90% de; (c) DIAD, TPP, HN3,
CH2Cl2, �20 �C to rt; (d) Zn, NH4Cl, EtOH, 80 �C; (e) Boc2O,
CH2Cl2, rt, 43–60% 4-step yield.
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homobenzylic amine 4 was synthesized via an 8-step
sequence starting from DD-valinol (5). Thus enantiomeri-
cally pure 5 was converted, using literature methods,5

into an Evans-type chiral auxilliary6 followed by acyla-
tion with propionyl chloride to afford 6 in 68% yield.
A chelation-controlled diastereoselective alkylation of
the lithium (Z)-enolate of 6, using meta-bromobenzyl
bromide (7) followed by hydrolytic removal and recy-
cling of the chiral auxilliary (98% recovery), produced
enantiomerically pure acid 8.7 Curtius rearrangement
followed by trapping of the intermediary isocyanate
with benzyl alcohol provided enantiomerically enriched
4 (97% ee). This synthetic sequence provided sufficient
quantities of 4 in 42% overall yield (Scheme 1).8

Our initial attempts to set the benzylic amine center in
compounds 1–3 focused on accessing acetophenone 9
(Scheme 2). The treatment of 4 with 1 mol % Pd(OAc)2,
2.2 mol % dppp, 1.2 equiv K2CO3, and 2.5 equiv n-butyl
vinyl ether in 8.5 vol. DMF/water (5:1)9 at 80 �C affor-
ded ketone 9 in 91% yield after aqueous workup and
recrystallization (0.1 kg scale).10

To set the benzylic stereogenic center present in 1 or 2,
ketone 9 was diastereoselectively reduced using either
(S)-CBS or (R)-CBS reagents to afford N-Cbz-protected
aminoalcohols (S,S)-10 (95% de) and (S,R)-10 (90% de),
respectively (Scheme 2). Alcohols 10 were separately
carried through the sequence starting with a Mitsunobu
inversion using hydrazoic acid,11 zinc reduction of the
resulting azide 11, followed by protection of the result-
ing amine as the N-Boc derivative 12. Each of the above
sequences from ketone 9 to the orthogonally protected
diastereomeric diamines 12 was optimized, allowing
the 4-steps to be performed with a single isolation
(Scheme 3). Final purification by recrystallization affor-
ded both (S,R)-12 (43% yield,12 >99% de) and (S,S)-12
(60% yield,12 >98.5% de) in excellent yield over 4-steps
on a multigram scale.

An alternative approach to introduction of the chiral
phenethylamine moiety utilized the method of diastereo-
selective imine reduction, recently published by Toste
and co-workers.13 The required diphenylphosphinyl
ketimine was prepared according to literature proce-
dures.14 Quantitative formation of the oxime from
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Scheme 2. Conversion of aryl bromide 4 to orthogonally protected
diamine 12. Reagents and conditions: (a) 1 mol % Pd(OAc)2,
2.2 mol % dppp, K2CO3, n-butyl vinyl ether, DMF/water 5:1, 80 �C,
91%; (b) 5 mol % (S)-CBS, THF, �14 �C, 99% (S,S)-10 (95% de); (c)
5 mol % (R)-CBS, THF, �14 �C, 99% (S,R)-10 (90% de); (d) DIAD,
TPP, HN3, CH2Cl2, �20 �C to rt, 82%; (e) Zn, NH4Cl, EtOH, 60 �C,
90%; (f) Boc2O, CH2Cl2, rt, 98%.
ketone 9 followed by reaction with chlorodiphenylphos-
phine at low temperature (�40 �C) afforded a reactive
intermediate15 that was subsequently rearranged to
required diphenylphosphinyl ketimine 13 (64% yield)
(Scheme 4). Reduction of 13 was attempted in the
presence of 3 mol % rhenium catalysts (R)-14a or
(S)-14b with phenyldimethylsilane (DPMS-H) as the
stoichiometric reductant (Scheme 4).

In contrast to several similar ketimines studied by Toste
and co-workers,13,16 reduction of 13 with catalyst (R)-
14a suffered poor reactivity (77%, 88% de) leading to a
mixture of N-Dpp-amines 15 after 5 days at room tem-
perature. Interestingly replacing dichloromethane with
1,2-dichloroethane did not improve the reactivity;
however, it resulted in a markedly increased diastereo-
selectivity (95% de). A similar trend was observed with
a less elaborated but more readily available catalyst
(S)-14b. However, the diastereoselectivities were not
synthetically useful (50% de). Ultimately, we found that
increasing the reaction temperature in 1,2-dichloro-
ethane had little effect on diastereoselectivity. Thus
using (R)-14a as catalyst reaction at 70 �C for 3 days
gave 86% conversion to (S,R)-1517 with 92% de.

Initial attempts at formation of the gem-dimethyl di-
amine 3 began with the addition of a methyl anion
equivalent to ketone 9 to afford tertiary alcohol 16
followed by a Ritter-type reaction with hydrazoic acid.11,18

However, a low yield was observed upon addition of
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MeMgBr presumably due to enolization of ketone 9
(Scheme 5).19

Therefore, an alternative approach to 3 targeted 1,1-
disubstituted olefin 20. Coupling of aryl bromide 9 with
potassium iso-propenyltrifluoroborate (18)20 afforded
Ritter reaction substrate 20 in 80–84% yield (Scheme 6).

Hydrazoic acid addition to 20, followed directly by
hydrogenation, afforded 3 in 90% overall yield. Having
established several viable routes to the benzylic amine
we focused our attention back to obtain a more concise
synthesis toward the homobenzylic amine.

Beginning with commercially available metaraminol
(21),3 elaboration to diamine 3 was accomplished via a
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pyridine, 44% 2-step yield; (c) NaH, BnBr, THF, rt, 89%; (d) 18, 1 mol % Pd
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6-step sequence (Scheme 7). Carbonylation of metaram-
inol using phosgene followed by treatment with triflic
anhydride afforded 22 in 44% yield over 2 steps. Protec-
tion of the cyclic carbamate (as the N-Bn derivative 23,
89% yield) allowed a clean cross coupling with potas-
sium iso-propenyltrifluoroborate (18) to afford 1,1-
disubstituted olefin 24 in 95% yield. Finally, treatment
of 24 with hydrazoic acid gave the azide that upon
hydrogenation in the presence of Pearlmann’s catalyst
afforded diamine 3 in 60% yield over 2 steps.

Readily available enantiopure aziridines21,22 in principle
offer a convergent way to construct the homobenzylic
amine portion of 1–3 by a ring opening with appropriate
aryl carbanions. However, carbanions generally exhibit
poor reactivities toward ring opening reactions unless
an activating, electron-withdrawing group is present
on the aziridine nitrogen atom.23 The most prevalent
activating group employed has been the N-tosyl,21,24

but this can be difficult to remove. Aziridines with more
easily removable groups, such as N-Boc,21 have seldom
been used due to poor reactivity25 and side-reactions,26

with the notable exception of N-Dpp-aziridines intro-
duced by Sweeney and co-workers.27 In our search for
a convergent route toward 1–3, we decided to investigate
conditions that favor aziridine ring opening over side-
reactions within the N-substituent. Our first choice was
N-Cbz-protected aziridine (26) derived from LL-alaninol
(25). The advantages of the Cbz group over other viable
N-substituents such as Dpp were twofold: (i) the reac-
tion would afford the same N-Cbz-protected intermedi-
ates (9 or 20) for which further chemistry had already
been developed (vide infra); (ii) orthogonal protection
would be retained, as compared with N-Dpp-aziridines
which would likely need a re-protection (cf. imine reduc-
tion approach, Scheme 4).

The N-Cbz-protected aziridine 26 was prepared using
analogous one-pot procedure developed for N-Boc-azir-
idines22c in 90% yield. The carbon nucleophiles, in this
case functionalized aryl Grignard reagents 28 or 29,
were prepared from commercially available 3-bromo-
acetophenone (27) (Scheme 8). Reaction of aziridine
26 with aryl cuprates, generated in situ from a copper
salt (0.05–1.0 equiv) and arylmagnesium bromides
(1.1–2.0 equiv) at �20 �C, led predominantly to ring
opening with complete regioselectivity toward the less
substituted carbon. All identified side-products were
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derived from the attack of the arylmagnesium (28 or 29)
on the carbonyl of the Cbz-group. Surprisingly, cuprates
generated from the respective organolithiums were not
competent in the ring opening reaction. These results
suggest that lithium cations28 are the cause of this dra-
matic change in the reactivity of aziridines. By using
Grignard reagents as cuprate precursors, homobenzylic
amines 9 and 20 were isolated in good yields (68% and
67%, respectively). Homobenzylic amine 9 was elabo-
rated to the desired 1 or 2 using the CBS reduction/azide
displacement/reduction protocol (cf. Scheme 3). Overall,
diamines 1229 were prepared in a respectable 29–41%
yield over 5-steps from readily available aziridine 26.
gem-Dimethyl amine 3 was prepared in 60% yield over
3-steps from 26.

In summary, several approaches to diamines 1–3 con-
taining spatially separated stereocenters have been dem-
onstrated. An approach utilizing an aziridine ring
opening with aryl cuprates afforded the desired amines
1–3 in high overall yield. Key to the ring opening of azir-
idines was the exclusion of lithium cations. Further stud-
ies are currently ongoing.
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